Home

FREE On-line Residential HVAC Design Training

2 Comments

NOTE: These classes are done. A very similar class was recorded and posted on our YouTube Channel, here: https://www.youtube.com/watch?v=1IrMBbjEgjE&list=PL_287eMrjGiH1w1YTsWbAj83lxrhcUioC

Hi Everyone,

Just wanted to pass this along. I’ll be teaching a couple classes in the next couple of weeks.

The great folks at Southern California Edison’s (SCE’s) Energy Education Center in Tulare, CA are hosting free residential HVAC Design Training

Featuring the Award-Winning Kwik Model with EnergyGauge Loads!

Not only is Kwik Model an awesome 3D design tool, but its 3D virtual environment makes it the best training tool available.

The first class is an introductory class, followed the next week by two classes (Parts 1 and 2), one on Tuesday and one on Wednesday.

The introductory class is optional, but recommended.

Part 2 is a continuation of Part 1 – please register for both

Anyone can attend these classes and participate from anywhere.

Check out these FREE LIVE (on line) classes – class descriptions below:

Intro to Residential HVAC Design in 3D

Tuesday, March 1, 2022

2:00 p.m. – 5:00 p.m. (Pacific)

Register Here

3D Residential HVAC Design (No CAD Required) – Part 1

Tuesday, March 8, 2022

2:00 p.m. – 5:00 p.m. (Pacific)

Register Here

3D Residential HVAC Design (No CAD Required) – Part 2

Wednesday, March 9, 2022

2:00 p.m. – 5:00 p.m. (Pacific)

Register Here

Class descriptions:

Introduction to Residential HVAC Design in 3D

This class will be an introduction to ACCA Manuals J, S and D (load calculations, equipment sizing and duct design) using a new 3D HVAC design software. Rather than drawing the house in a CAD software, this software “builds” the house out of scalable 3D boxes. The benefit of 3D design is that it helps make sure that the system being designed will actually fit in the house and gives a better indication of duct length, surface area, bends and fittings. Attendees should have a good working knowledge of HVAC terminology and concepts.

Course Objectives: 

• Understand the basics of building geometry.

• Understand the basics of heating and cooling load calculations.

• Understand the basics of heating and cooling equipment selection.

• Understand the basics of duct layout and sizing.

• Understand the importance of good airflow on cooling equipment capacity and efficiency.

• Understand the importance of proper register/grille location, sizing and type.

Target Audience:

• HVAC Contractors

• HVAC Designers / Architects

• Energy Consultants

• HERS Raters

Learning Level:

Basic Class: Content is introductory in nature and requires no prerequisite knowledge or experience to grasp the concepts or participate in exercises. Basic educational activities and materials are meant to establish a foundation of knowledge and competence that will be expanded upon in practice or in higher level seminars and workshops.

Prerequisites: Attendees should have a good working knowledge of HVAC terminology and concepts.

3D Residential HVAC Design – Parts 1 and 2

Part 1 will cover load calculations and equipment sizing according to ACCA Manuals J and S (duct design according to Manual D will be covered in Part 2). The training will be based on a new 3D HVAC design software. Rather than drawing the house in a CAD software, this software “builds” the house out of scalable 3D boxes. The benefit of 3D design is that it helps make sure that the system being designed will actually fit in the house and gives a better indication of duct length, surface area, bends and fittings. Attendees should have some basic experience using an HVAC design software and/or knowledge of ACCA Manuals J/S/D, and a good working knowledge of HVAC terminology and concepts. It is highly recommended that you take Part 1 before taking Part 2. Part 2 will be held at the same time the following evening.

Course Objectives: 

• Understand the basics of how building geometry affects load calcs.

• Understand the basics of heating and cooling load calculations.

• Understand the basics of heating and cooling equipment selection.

• Become comfortable with the basic commands of Kwik Model with Energy Gauge Loads software.

Target Audience:

• HVAC Contractors

• HVAC Designers / Architects

• Energy Consultants

• HERS Raters

Learning Level:

Intermediate Class: Content is appropriate for individuals who possess a fundamental understanding of the topic and have familiarity with basic terminology and methodology of the subject matter. Attendees should have the capacity to participate in instructor-led exercises requiring synthesis and application of concepts.

Prerequisite: Basic experience in HVAC design software and/or knowledge of ACCA Manuals J/S/D and an understanding of HVAC terminology and concepts.

Don’t miss out.

Mark your calendars now.

We hope you can make it!

Advertisement

Ceiling Registers vs. Floor Registers

2 Comments

Which is better for distributing heated air to a house, ceiling registers or floor registers?

This seems like an easy question. Hot air rises so blowing the air up would improve the flow. This makes sense on the surface, but let’s look deeper.

First of all, let me make it clear that if the system is properly designed, both will work just fine.  But, all things being equal, is one better than the other, even if only slightly?

Recall that the purpose of blowing heated air into a room is to maintain a constant temperature over time and an even, consistent temperature everywhere in the room.  That temperature is whatever the thermostat is set at. Let’s say that’s 70 degrees.  When the heating system stops, the room begins to cool off.  Hopefully the thermostat will sense that and turn the heating system back on. This cycling on and off can cause problems.

The air that we are blowing into the room is substantially hotter than the air in the room.  In other words, we are adding concentrated btus into a volume of air to replace the btus that the air has lost.  It’s sort of like adding red food coloring to white frosting, but the red keeps fading away and we have to keep adding more concentrated red coloring.  We want the frosting to have a very even color, no dark streaks (hot spots) and no light streaks (cold spots).  To do this we have to mix as much as we can.  Mixing is the key to even temperature distribution in a room.

The next thing to look at is the register itself.  What is the purpose of the register?  Take a typical stamped-face 2 way ceiling register and a similar floor register.  Why are there 2 directions?  To send the air to different parts of the room, of course.  Why do we want to do that? So we don’t have hot spots and cold spots.  In other words, the register is designed to distribute the air around the room, which is another way of saying to mix the air

Also notice that the registers are angled to direct the air away from whatever surface the register is mounted in.  Ceiling registers throw the air down and floor registers throw the air up.  Also notice that they have a horizontal direction, parallel to the ceiling or floor.  This horizontal distance the air travels before slowing down to a certain velocity is what is referred to as the “throw distance”, but there is also a significant vertical component.  Register manufacturers provide specifications for their registers, including throw distance, static pressure drop, and noise criteria, at different face velocities and flow.  Again, supply registers are intended to push the air to all parts of the room to ensure even temperature distribution.  So, hopefully you will agree, that the key factor for selecting a good register location (and type) is to promote mixing

Another issue that comes into play is that warmer air is less dense than colder air.  Notice the “-er” at the end of those two important words, warmer and colder.  It’s not correct to say that “hot” air rises, but of course when people say that they usually mean “hotter”.  Hotter air rises in the presence of colder air.  It’s relative.  Most people would consider 120 degree air “hot”.  I could make 120 degree air come out of a wall register and sink to the ground like fog at a Transylvania cemetery.  How?  Make the room 160 degrees first.  Not very practical, but you get the point.

How do we reduce stratification? By reducing the temperature difference (delta T) between the room air and the supply air.  How do we do that?  One way is to reduce the supply air temperature by increasing cfm.  You can do this by increasing ducts sizes and reducing restrictions.  You can also do it by increasing the speed that the air handler runs on in heating mode.  Other than that, the easiest and best way to reduce the temperature difference between two masses of air is the mix them.  The sooner the air mixes together, the less chance there will be of stratification.

So, how do we mix the air?  A giant blender in each room would be great.  That’s basically what a ceiling fan is.  Ceiling fans are awesome! Make sure it is blowing up in the winter and down in the summer.  They beat the air like a scrambled egg, virtually eliminating stratification. Unfortunately, they use electricity and home owners tend to leave them on too much. Other than ceiling fans, we can help the air mix with register placement and selection.  Mixing is helped by turbulence.  Turbulence is created by making the air do things that it doesn’t really want to do.  Blowing the air the opposite direction that it wants to go can create turbulence, like a bunch of people going out the entrance of a building while other people are trying to come in, like cars going the wrong way on a freeway.  If hotter air wants to rise, blowing the air up will only get it up to the ceiling faster, where it will stay.  Blowing hotter air down will make it go down through the colder air and then fight its way back up, by that time it has mixed and cooled off: lower delta T = less stratification.

Note that there are two types of air movement in a room that is caused by the incoming supply air.  The primary airflow is caused by the force and velocity of the air coming out of the register.  The secondary airflow takes over when the air has lost its momentum and other forces take over.  These forces are usually stratification (buoyancy pressure) or the fact that the room is being pressurized, assuming there is no return grille in the room, the air has to leave the room and is being pushed out by the air coming in behind it.

Note that higher face velocity of the air coming out of a register can improve mixing but it can also have other negative affects, such as higher static pressure drop (resistance) and noise.  It’s very important to realize that face velocity is completely different than the velocity of the air in the duct.  You can have extremely slow air in a large duct and very high face velocity if the air is coming out of a small register.  Velocity is cfm/area.  The area of the duct is usually very different than the net free area of the register.

The image below shows what happens when hotter air is blown up into a colder room.  The primary airflow sends it up toward the ceiling and there is little secondary airflow to make it go anywhere else.  This exacerbates stratification.

Image from HVAC 1.0 – Introduction to Residential HVAC Systems

This next image shows what happens when hotter air is down into a colder room.  The primary airflow sends it down toward the floor and the secondary airflow causes it to want to rise back up toward the ceiling.  This promotes mixing and reduces stratification.

Image from HVAC 1.0 – Introduction to Residential HVAC Systems

Based on this and with all else being equal (airflow, delta T, face velocity, etc.) registers in the ceiling are more likely to promote mixing of heated air blown into a room and the ceiling is therefore a better location for supply registers in heating mode than floor registers.

A Quick and Easy DIY for Improving Air Flow in a Home

7 Comments

My friends just moved into a new (to them) home and invited us to the housewarming party. I made the faux pas of critiquing their HVAC system. This embarrasses the heck out of my wife and happens far too often. It’s very hard not to say something when you know so much about how these homes were built. In our area, I can look at the type and location of the supply registers and tell you which HVAC company designed and installed it.

Probably 95% of production homes in CA (and likely all over) suffer from undersized ducts, which results in airflows below 350 CFM per ton or so. Some much less. In the 2013 version of CA’s energy code they mandated a minimum of 350 CFM per ton and 0.58 watts per CFM. Think of 350 CFM per ton as a D- grade. One CFM less is a FAIL. The other way to think of it is as the very worst airflow you can have and still meet code. When I was designing a lot of production homes, I designed to an absolute minimum of 400 CFM/ton and they regularly tested out at closer to 500 cfm/ton because I was pretty safe sizing ducts. More airflow is generally better, especially in hot/dry climates.

A real quick and easy way to improve airflow in these types of homes is to replace the cheap “stamped face” registers with a “bar-type” register. These may go by different names but, basically, a stamped face register is the most common style. The entire face and the fins are all from one piece of sheet metal that was stamped and the fins were bent in or out. Bar type registers have a rectangular frame, but each fin is a separate piece of metal that can be individually adjusted (without bending anything). Both Lowe’s and Home Depot sell both kinds. (Search “ceiling registers”on their sites.) The easiest way to tell them apart is price. Bar type registers are roughly twice the price of the same size stamped face, which explains why stamped face are the most common in most homes. But even at $15-$25 each, it’s a cheap way to really improve airflow. A bar type register is rated for roughly twice the airflow at the same pressure drop and sound rating as a stamped face. I’ve often measured up to 20% increase in airflow by replacing a stamped face register with a bar type, occasionally more. When I lived alone in an apartment, I took all the registers off completely and it made a huge difference! Only an bachelor engineering nerd can get away with that, though. (No, “bachelor engineering nerd” is not a redundant term.)

 

Bar Type Register – photo from homedepot.com

 

Stamped Face register – photo from homedepot.com

 

 

 

 

 

 

 

 

 

 

Here is link to a 10×6 bar type register sold by Home Depot: bar type register

Here is link to a similar one sold by Lowe’s: bar type register

Note that the size 10×6 refers to the size of the register boot behind the register. The dimension of the register itself is about 1 3/4 inch bigger in both dimensions. So if you were to go through your house and measure the outer frame dimension of all your registers, you would subtract about 1.75 from each dimension to get the nominal size (round to the nearest inch). They come in pretty standard sizes, usually even numbers, 12×4, 10×6, 12×6, 8×4, etc. They might also come in steel or aluminum. Aluminum is a bit more expensive. Steel is fine unless you live in a humid area. They perform about the same.

You can also sometimes buy directly from your local HVAC supply house. Tell them you want something comparable to a “Shoemaker 950 series (aluminum) or 951 series (steel) bar type register”.

The only tools you need are a screw driver and maybe a razor knife if the registers are caulked in place. Only do this project if you are comfortable working over your head while on a ladder and the registers are easily accessible. Be super careful. I’ve seen registers located 20′ above the floor. Leave those alone. Hopefully the screws holding the registers in place are going into wood and not just sheet rock. If not, which happens too often, you may have to use some sheet rock anchors.

I suggest only replacing the registers in the more important rooms, such as family room, master bedroom, etc. Smaller rooms like bathrooms and laundry rooms usually are getting plenty of air. If you have rooms where you’ve closed down a register, no need to replace those. Also, if you live in a two story house served by a single, non-zoned system (one thermostat) try replacing just the downstairs registers first. See if you notice a difference.

While you’ve got the registers off, take some caulk or expansive foam and seal the gap between the sheet rock and register boot (sheet metal box that penetrates the sheet rock and that the register slips into). Make sure you can get the register back in before the caulk or foam dries.

If you do this let me know how it came out! Good luck. Be safe.

How a House is Like a Tank of Water

5 Comments

Happy 2014, everyone. 2013 was a good year for me. It certainly did not go the direction I would have expected with the California Energy Commission work lasting all year, but it was a blessing and I’m very grateful. I realized that I only posted two blogs last year. Even though those two blogs generated a ton of feedback and even a little controversy, I resolve to do much better this year.

Great news! SMUD has generously offered to sponsor my “HVAC 1.0 – Introduction to Residential HVAC Systems” for FREE! Obviously, it is based on my book of the same name. You even get a free copy of the book (a $29.99 value). Here is a link to sign up: https://usage.smud.org/etcstudent/ClassDescription.aspx?Id=895 Right now it is to be offered on March 6 at their headquarters. If the demand is high and the response good, they could very well offer it again. If you can’t make it on March 6, be sure to tell them that you’d love to see it offered on a different date.

I’ve been experimenting with making this class an on-line class. I’ve taken some of the power point slides and some audio files of me speaking and created a short movie. We all hate the way our recorded voices sound and I’m no exception. I speak much more slowly and sound a lot more like Mr. Rogers than I do when I teach live.

As an experiment, I started with Appendix A. This is the “Tank of Water Analogy” that I’ve been using for years and getting excellent feed back. It’s amazing how a simple analogy can really help explain something that’s much less intuitive. It’s definitely the most basic part of the book. Other sections are far more technical. This was a good section to experiment with.

There are a lot of different ways to do on line training. For me, the most effective is the one that you can easily pause, rewind, replay. My plan is to take a class that can easily go 8 hours live and condense it down into about 5-6 hours worth of videos, none of which are more than 20 minutes long (hopefully).

Please take a look at this sample. It is about seven minutes and let me know what you think. I suggest that you frequently hit the pause button and let what was just said in the video sink in for a few seconds. Otherwise, I have found that minds tend to wander . . . Squirrel! (I watched “Up” over Christmas break. Great family movie.)

Russ

What’s a Few Degrees Amongst Friends? – Picking A Summer Outside Design Temperature

9 Comments

Merry Christmas . . . uh . . . Happy New Year! . . . ahem . . . Ok, so it’s been a while since my last blog . . . Sorry for the hiatus.  I was put on a support contract to help California Energy Commission staff write the updated (2013 code) version of the Residential Compliance Manual and that took me off line for a few months.  I have a newfound respect for the hard working folks at the Energy Commission.  They truly want the code to be fair, practical and enforceable.  That’s a much harder task than any of us on the outside realize.  All in all, there are many improvements to the code this time around.  The compliance software is still a big mystery.  The new dynamic forms will be very cool once the bugs get worked out.

The topic of today’s blog post is summer outside design temperatures and why you shouldn’t stress over them.  More precisely, there are other things far more important to stress over.

ImageA few years back, I literally had a contractor refuse to install my HVAC design solely because I chose a summer outdoor design temperature that was two degrees lower than what he thought it should be.  I was using the temperature required by the energy codes and recommended by ACCA and ASHRAE.  Granted, the project was a few miles away from the city that the temperature was measured for, and granted, it was on the other side of a small ridge.  Even if the “true” summer outside design dry bulb for the precise location of the project was 2 degrees higher than what I used, how big of a difference does that really make?  According to him, all the difference in the world.

His argument was that it would cause the A/C to be undersized and result in homeowner complaints that HE would have to deal with, not me.  First of all, as a licensed mechanical engineer, I am totally responsible for the performance of any mechanical plan that I stamp and sign.  Yes, he would be the first one they called, but if it turns out that my design was the cause of the problems, I would be responsible for fixing it and for paying for his time to respond to it.

The first thing to realize is that typical residential A/C systems only come in a few sizes.  1.5, 2, 2.5, 3, 3.5, 4 and 5 ton sizes.  Roughly speaking these represent sensible cooling capacities of numbers something like 12,000, 16,000, 20,000, 24,000, 28,000, 32,000, and 40,000 btuh.  Basically, what happens is that you do your load calcs and then you pick the next size up.  So, if your sensible load is 13,000 Btuh, you would have to pick a two-ton because a 1.5 ton system would not be enough.  (Note: these sensible capacity values are very crude.  They are probably a little low.  I’m making them up because it’s easier to work with round numbers and I am too lazy to get some real numbers; however, real numbers would illustrate the exact same point.  Actual sensible capacities come from detailed performance tables published by the manufacturer and depend on indoor temperature and humidity, outdoor temperature, airflow across the coil and, of course, make and model.  Please don’t use these as rules of thumb.  I disavow any responsibility for them.  If you want to learn how to determine these for real equipment, read ACCA Manual S.)Image

For a typical 3 to 4 ton load in a fairly new home, changing the summer outside design temperature from 98 to 100 adds about 1,000 to 2,000 btu to the sensible cooling load.  The reason that it is a fairly small number is because the indoor and outdoor temperatures establish the temperature difference (delta-T) between the inside and outside of the house.  This delta-T only affects loads caused by conduction through the building shell (heat transfer through solid walls, ceiling, etc.) and convection into the conditioned space (outside air leaking into the house).  This delta-T has no impact on the largest single source of heat entering the house in the summer – solar gains.  Solar gains can be 30-40 percent of the sensible load and do not change due to outside temperature.  Neither do internal loads.

Did you know that a house with an indoor summer design temp of 75 and an outdoor summer design temp of 100 will have about the same cooling load as a house with an indoor summer design temp of 65 and an outdoor summer design temp of 90.  (65 is not a reasonable indoor summer design temp.  Don’t use that.  Use 75.  This was just another dumb example to make a point.)

So, let’s say your sensible cooling load calc at 98 deg is 29,000.  That would suggest a 4 ton system.  If you re-ran it at 100 deg and it went up to 31,000, a four-ton system would still work.  Your load calc at 98 deg would have to be over 30,000 before changing the temperature to 100 deg would even hint that you needed to go up to the next size equipment.  In this case, that would be a five-ton system.  So, lets just say for laughs that my load calc at 98 deg came out at 31,000.  If I caved to the contractor and reran the calcs at 100 deg, they would come out at around 33,000.  Too big for a 4 ton, so we would have to go to a 5-ton that delivers 40,000 btuh, sensible.

But, are we really doing the homeowner a service by putting in a system that is oversized by 7,000 btuh (21% excess capacity).  Wouldn’t it make more sense to really look at what this means and maybe try to find a way to make the 4-ton system work by dropping the load of the house back to 32,000?  (The answer is YES.  It would make tons more sense to do that.  Pun intended.)

Also, what exactly does the summer outdoor design temperature number represent?  Currently, we use a value called the “1% Summer Design Dry Bulb”.  It can be found for pretty much any city in California (there are about 750 listed) in the 2008 Joint Appendices, Appendix JA2.2.  What does the 1% mean?  Well, you can scan through Reference Appendix JA2 and by looking at cities you are familiar with, you will notice right away that it certainly doesn’t represent the hottest day of the year.  It’s usually well below that.  What it means is that the outdoor temperature is higher than that number only 1% of the time over however many years the data was collected for.  (Also notice that they list a value for 0.1%, 0.5% and 2%.  The code requires that you use the 1.0% value.)ImageAnother way of looking at this number is that 99% of the time, the actual cooling load is less than the load calculated using that temperature.  The system is perfectly sized for the few hours where the temperature is exactly the design temperature.  Let’s be generous and say that’s about 1% of the time.  This means that 98% of the time the system is oversized and will cycle on and off (or not run at all).

So, if our cooling load and cooling capacity were exactly the same, let’s say 32,000, then 1% of the time the load is greater than the capacity of the equipment and it cannot remove Btus as quickly as they are coming in.  When this happens, the temperature in the house will creep up.

If you didn’t know this already, a perfectly sized air conditioner will run continuously when the outdoor temperature is at or above the design temperature.  This is a good thing and the reason why is a discussion for a later blog, perhaps.  Just suffice it to say that cycling on and off is about as good for an air conditioner’s efficiency as stopping and starting is for your car’s MPG.

Let me also say this:  There is no such thing as a perfect load calculation.  They are a SWAG, which is only little better than at WAG (A WAG is a wild-ass guess.  A SWAG is a scientific wild-ass guess.)  Trying to calculate an exact sensible cooling load is like trying to measure the average diameter of a cotton ball with a micrometer.  Where do you draw the line?  The best you can do is document your assumptions and hope that you are right most of the time (99% is pretty good, by the way).

So, what ultimately happens during that 1% of the time when the A/C cannot keep up?  The indoor temperature shoots up like your car parked in the sun, your favorite leather chair burns skin off of your back, all the plants wilt, the goldfish are parboiled, and the kid’s crayons melt into pretty little puddles of color.  No.  None of these things happen.  What actually happens is the indoor temperature will creep up a few degrees.  If the set point is 75 degrees, it will rise up to 76, 77, maybe 78 degrees. (Seventy-eight degrees was the indoor design condition for many years by the way). How fast it takes to do that depends on the house.  One of the biggest factors is how much insulation and thermal mass the house has.  Thermal mass stores Btu’s in the winter and Bcu’s in the summer.  A “Bcu” is a Bubba’s Cooling Unit and it is equal to -1 Btu, see an earlier blog on that topic.

A fairly new, reasonably well-built house will rise about 1 degree per hour.  Whether or not that becomes a big problem depends on how hot it gets outside and how long it stays above the design temperature.

ImageThe above graph shows a hypothetical house that has the equipment sized exactly to the load.  Remember that this usually doesn’t happen when you pick the “next larger piece of equipment”.  Normally, there is some excess capacity in a properly sized system.

The red line is a typical pattern for outside temperature in the summer for a fairly hot city like Fresno or Sacramento.  This graph shows two consecutive “hot” days where the outdoor temperature exceeds the design temperature by several degrees for a few hours.  Remember, this only happens 1% of the time.

When it does happen, what happens to the indoor temperature?

The indoor temperature is represented by the blue/green/pink line.  When the line is blue, the indoor temperature is below the thermostat set point, of 75 degrees, for example.  This happens when it is cooler outside than inside.  When the line is green, the indoor temperature is right at 75 degrees.  This happens when the outdoor temperature is above 75 degrees but below the outdoor design temperature.  When the line is pink, the indoor temperature is above 75 degrees.  This happens when the outdoor temperature is above the outdoor design temperature.  Notice that if these were weekdays, the pink bump is happening mostly when no one is home.

Something else to realize is that when the line is blue, the A/C is not running at all.  When the line is green, the A/C is cycling on and off.  When the line is pink, the A/C is running continuously.  Interesting?  I think so.

So, does that graph represent something that the typical homeowner would complain about?  Possibly.  Homeowners have a right to be picky.  They are spending a lot of money on their home.  Are there things a homeowner can do to make sure this doesn’t happen (without changing the size of the A/C)?  Absolutely.  Remember, this only happens on the few hottest days of the summer and in a system with no excess capacity.  Most homeowners know when hot days are going to happen and can take reasonable precautions.

Most cooling loads are calculated with the assumption that some or all of the interior shades (drapes, etc.) open.  Keeping all of the drapes closed during hot weather makes a huge difference.  Planting shade trees around a house makes a big difference.  Even neighboring buildings provide shade not accounted for in the load calcs.  Pre-cooling or overcooling the house can help too.  This is when you set the A/C down a couple extra degrees, cooling the house down a little extra at night, and letting the thermal mass of the home help keep it cool during the hottest time of the day.

Did you know that a house with less thermal mass will have a taller hump in the pink part of the line.  A house with more thermal mass will have a flatter hump.

The vast majority of homeowner complaints about cooling that I have dealt with did not stem from undersized equipment and certainly would not have been solved by using a higher outside design temperature.  They stemmed from poorly built homes (leakier than expected, poorly installed insulation, etc.), underperforming cooling systems (poor refrigerant charge, low airflow due to undersized ducts, leaky ducts, etc.) and poor thermostat operation (turning system on and off and not letting it reach equilibrium).

ImageThis graph represents a more normal hot summer day.  Where it does not quite reach the design temperature outside.  These are far more common than the previous example.  Notice that there is no pink bump where the indoor temperature drifts up.  Realize though, that the lower the outdoor temperature is, the more often the system will cycle on and off.  This reduces efficiency.  The ultimate question then becomes, is it worth having a less efficient system the vast majority of the time just to prevent the indoor temperature from creeping up a few degrees on very hot days (which can be prevented with simple precautions).  I vote no, but that’s just me.

By the way, the same contractor that I mentioned at the beginning of this blog also told me that a 16” return duct is fine for a 4-ton system (hint: that’s not even close).  So, the moral of that story is: stop quibbling over things that we cannot control, like the weather, and start quibbling over things we can control, like quality construction, quality system design, good air flow, and proper thermostat operation.

School of Thought #1: Register Over the Window

6 Comments

As I mentioned in my previous post, the Four Schools of Thought for Ceiling Register Placement are 1. Register Over the Window, 2. Register interior to room., 3. Register in Center of Room, and 4. High Sidewall Register.  All four schools of thought can work just fine (in terms of comfort), when done correctly.  Comfort, however, is not the only factor to consider.  Energy efficiency, materials efficiency, ease of installation, and aesthetics are all things to consider as well.  This post will look at all of those factors for this particular school of thought: Register Above the Window.  By the way, unless I say otherwise, I’m focusing on cooling mode on a very hot day.

Putting a register above the window seems to be one of the most common locations in homes for many, many years.  It also seems to have the most ardent and dedicated (aka, stuck in their ways) practitioners.  Having put about 2000 residential HVAC designs to paper, I’ve received a lot of, shall we say “comments” about my plans.  No matter where I put a register, there was always an HVAC contractor who did not like that location.  The one location that most contractors would insist on was over the window.  The reasoning went from logical (this directly addresses the major load in the room), to rule of thumb (I was always taught that you had to “wash the windows”), to experience based (I’ve been doing it this way for 30 years and it has always worked fine), to nutty (it pushes the heat/cold back out the window).

When done correctly it can be very effective and maintain good comfort, but it does have some serious drawbacks.  The correct way to do this option is to use a two-way register oriented parallel to the window.  alternatively and bar-type register can be used with the air directed in a manner similar to a two-way register.  Using the wrong register can seriously screw this option up.  I’ve seen three way registers located here, but blowing back into the room or worse, blowing directly on the window.  Both of these can result in serious comfort and energy issues.

The down sides to this school of thought include:

  • compared to other locations, it requires the most ducting, which increases materials costs, conductive losses, and pressure drop.
  • If the roof pitch drops down over the window, the register boot can be very close to the roof decking.
  • Because the air only comes out in two directions it doesn’t mix as well and can cause cold spots if directly in the path of the airflow.
  • If located too close to the window, it can blow air directly on the window.  This increases the delta-T across the window, increasing conduction through the window.

Next Post:  School of Thought Number 2 – Interior to Room