Home

A Quick and Easy DIY for Improving Air Flow in a Home

1 Comment

My friends just moved into a new (to them) home and invited us to the housewarming party. I made the faux pas of critiquing their HVAC system. This embarrasses the heck out of my wife and happens far too often. It’s very hard not to say something when you know so much about how these homes were built. In our area, I can look at the type and location of the supply registers and tell you which HVAC company designed and installed it.

Probably 95% of production homes in CA (and likely all over) suffer from undersized ducts, which results in airflows below 350 CFM per ton or so. Some much less. In the 2013 version of CA’s energy code they mandated a minimum of 350 CFM per ton and 0.58 watts per CFM. Think of 350 CFM per ton as a D- grade. One CFM less is a FAIL. The other way to think of it is as the very worst airflow you can have and still meet code. When I was designing a lot of production homes, I designed to an absolute minimum of 400 CFM/ton and they regularly tested out at closer to 500 cfm/ton because I was pretty safe sizing ducts. More airflow is generally better, especially in hot/dry climates.

A real quick and easy way to improve airflow in these types of homes is to replace the cheap “stamped face” registers with a “bar-type” register. These may go by different names but, basically, a stamped face register is the most common style. The entire face and the fins are all from one piece of sheet metal that was stamped and the fins were bent in or out. Bar type registers have a rectangular frame, but each fin is a separate piece of metal that can be individually adjusted (without bending anything). Both Lowe’s and Home Depot sell both kinds. (Search “ceiling registers”on their sites.) The easiest way to tell them apart is price. Bar type registers are roughly twice the price of the same size stamped face, which explains why stamped face are the most common in most homes. But even at $15-$25 each, it’s a cheap way to really improve airflow. A bar type register is rated for roughly twice the airflow at the same pressure drop and sound rating as a stamped face. I’ve often measured up to 20% increase in airflow by replacing a stamped face register with a bar type, occasionally more. When I lived alone in an apartment, I took all the registers off completely and it made a huge difference! Only an bachelor engineering nerd can get away with that, though. (No, “bachelor engineering nerd” is not a redundant term.)

 

Bar Type Register – photo from homedepot.com

 

Stamped Face register – photo from homedepot.com

 

 

 

 

 

 

 

 

 

 

Here is link to a 10×6 bar type register sold by Home Depot: bar type register

Here is link to a similar one sold by Lowe’s: bar type register

Note that the size 10×6 refers to the size of the register boot behind the register. The dimension of the register itself is about 1 3/4 inch bigger in both dimensions. So if you were to go through your house and measure the outer frame dimension of all your registers, you would subtract about 1.75 from each dimension to get the nominal size (round to the nearest inch). They come in pretty standard sizes, usually even numbers, 12×4, 10×6, 12×6, 8×4, etc. They might also come in steel or aluminum. Aluminum is a bit more expensive. Steel is fine unless you live in a humid area. They perform about the same.

You can also sometimes buy directly from your local HVAC supply house. Tell them you want something comparable to a “Shoemaker 950 series (aluminum) or 951 series (steel) bar type register”.

The only tools you need are a screw driver and maybe a razor knife if the registers are caulked in place. Only do this project if you are comfortable working over your head while on a ladder and the registers are easily accessible. Be super careful. I’ve seen registers located 20′ above the floor. Leave those alone. Hopefully the screws holding the registers in place are going into wood and not just sheet rock. If not, which happens too often, you may have to use some sheet rock anchors.

I suggest only replacing the registers in the more important rooms, such as family room, master bedroom, etc. Smaller rooms like bathrooms and laundry rooms usually are getting plenty of air. If you have rooms where you’ve closed down a register, no need to replace those. Also, if you live in a two story house served by a single, non-zoned system (one thermostat) try replacing just the downstairs registers first. See if you notice a difference.

While you’ve got the registers off, take some caulk or expansive foam and seal the gap between the sheet rock and register boot (sheet metal box that penetrates the sheet rock and that the register slips into). Make sure you can get the register back in before the caulk or foam dries.

If you do this let me know how it came out! Good luck. Be safe.

Advertisements

How a House is Like a Tank of Water

5 Comments

Happy 2014, everyone. 2013 was a good year for me. It certainly did not go the direction I would have expected with the California Energy Commission work lasting all year, but it was a blessing and I’m very grateful. I realized that I only posted two blogs last year. Even though those two blogs generated a ton of feedback and even a little controversy, I resolve to do much better this year.

Great news! SMUD has generously offered to sponsor my “HVAC 1.0 – Introduction to Residential HVAC Systems” for FREE! Obviously, it is based on my book of the same name. You even get a free copy of the book (a $29.99 value). Here is a link to sign up: https://usage.smud.org/etcstudent/ClassDescription.aspx?Id=895 Right now it is to be offered on March 6 at their headquarters. If the demand is high and the response good, they could very well offer it again. If you can’t make it on March 6, be sure to tell them that you’d love to see it offered on a different date.

I’ve been experimenting with making this class an on-line class. I’ve taken some of the power point slides and some audio files of me speaking and created a short movie. We all hate the way our recorded voices sound and I’m no exception. I speak much more slowly and sound a lot more like Mr. Rogers than I do when I teach live.

As an experiment, I started with Appendix A. This is the “Tank of Water Analogy” that I’ve been using for years and getting excellent feed back. It’s amazing how a simple analogy can really help explain something that’s much less intuitive. It’s definitely the most basic part of the book. Other sections are far more technical. This was a good section to experiment with.

There are a lot of different ways to do on line training. For me, the most effective is the one that you can easily pause, rewind, replay. My plan is to take a class that can easily go 8 hours live and condense it down into about 5-6 hours worth of videos, none of which are more than 20 minutes long (hopefully).

Please take a look at this sample. It is about seven minutes and let me know what you think. I suggest that you frequently hit the pause button and let what was just said in the video sink in for a few seconds. Otherwise, I have found that minds tend to wander . . . Squirrel! (I watched “Up” over Christmas break. Great family movie.)

Russ

School of Thought #1: Register Over the Window

6 Comments

As I mentioned in my previous post, the Four Schools of Thought for Ceiling Register Placement are 1. Register Over the Window, 2. Register interior to room., 3. Register in Center of Room, and 4. High Sidewall Register.  All four schools of thought can work just fine (in terms of comfort), when done correctly.  Comfort, however, is not the only factor to consider.  Energy efficiency, materials efficiency, ease of installation, and aesthetics are all things to consider as well.  This post will look at all of those factors for this particular school of thought: Register Above the Window.  By the way, unless I say otherwise, I’m focusing on cooling mode on a very hot day.

Putting a register above the window seems to be one of the most common locations in homes for many, many years.  It also seems to have the most ardent and dedicated (aka, stuck in their ways) practitioners.  Having put about 2000 residential HVAC designs to paper, I’ve received a lot of, shall we say “comments” about my plans.  No matter where I put a register, there was always an HVAC contractor who did not like that location.  The one location that most contractors would insist on was over the window.  The reasoning went from logical (this directly addresses the major load in the room), to rule of thumb (I was always taught that you had to “wash the windows”), to experience based (I’ve been doing it this way for 30 years and it has always worked fine), to nutty (it pushes the heat/cold back out the window).

When done correctly it can be very effective and maintain good comfort, but it does have some serious drawbacks.  The correct way to do this option is to use a two-way register oriented parallel to the window.  alternatively and bar-type register can be used with the air directed in a manner similar to a two-way register.  Using the wrong register can seriously screw this option up.  I’ve seen three way registers located here, but blowing back into the room or worse, blowing directly on the window.  Both of these can result in serious comfort and energy issues.

The down sides to this school of thought include:

  • compared to other locations, it requires the most ducting, which increases materials costs, conductive losses, and pressure drop.
  • If the roof pitch drops down over the window, the register boot can be very close to the roof decking.
  • Because the air only comes out in two directions it doesn’t mix as well and can cause cold spots if directly in the path of the airflow.
  • If located too close to the window, it can blow air directly on the window.  This increases the delta-T across the window, increasing conduction through the window.

Next Post:  School of Thought Number 2 – Interior to Room