Home

Excellent New Resource for Homeowners with Comfort Issues

Leave a comment

In conjunction with DIYLoadCalcs.com, we have started a brand new Facebook group called “Fix My HVAC” to provide a place where homeowners can ask questions in a safe, no pressure environment. I invited some of my industry professional friends to join as advisors and the first 50 or so members are already a who’s who of HVAC influencers, along with some of the very best HVAC contractors I know. Homeowners, if you are having any unresolved comfort problems in your home, or are thinking of doing any major work to your HVAC system, this is an excellent, well-moderated place to ask questions and get answers from some of the brightest minds in the residential HVAC world. Contractors/Service Techs, if you are stumped by any comfort issues, you are welcome to ask questions here too. Feel free to refer friends and family here as well. Take advantage! Please see the group rules for suggestions on how to form your questions for the best responses.

FREE On-line Residential HVAC Design Training

2 Comments

NOTE: These classes are done. A very similar class was recorded and posted on our YouTube Channel, here: https://www.youtube.com/watch?v=1IrMBbjEgjE&list=PL_287eMrjGiH1w1YTsWbAj83lxrhcUioC

Hi Everyone,

Just wanted to pass this along. I’ll be teaching a couple classes in the next couple of weeks.

The great folks at Southern California Edison’s (SCE’s) Energy Education Center in Tulare, CA are hosting free residential HVAC Design Training

Featuring the Award-Winning Kwik Model with EnergyGauge Loads!

Not only is Kwik Model an awesome 3D design tool, but its 3D virtual environment makes it the best training tool available.

The first class is an introductory class, followed the next week by two classes (Parts 1 and 2), one on Tuesday and one on Wednesday.

The introductory class is optional, but recommended.

Part 2 is a continuation of Part 1 – please register for both

Anyone can attend these classes and participate from anywhere.

Check out these FREE LIVE (on line) classes – class descriptions below:

Intro to Residential HVAC Design in 3D

Tuesday, March 1, 2022

2:00 p.m. – 5:00 p.m. (Pacific)

Register Here

3D Residential HVAC Design (No CAD Required) – Part 1

Tuesday, March 8, 2022

2:00 p.m. – 5:00 p.m. (Pacific)

Register Here

3D Residential HVAC Design (No CAD Required) – Part 2

Wednesday, March 9, 2022

2:00 p.m. – 5:00 p.m. (Pacific)

Register Here

Class descriptions:

Introduction to Residential HVAC Design in 3D

This class will be an introduction to ACCA Manuals J, S and D (load calculations, equipment sizing and duct design) using a new 3D HVAC design software. Rather than drawing the house in a CAD software, this software “builds” the house out of scalable 3D boxes. The benefit of 3D design is that it helps make sure that the system being designed will actually fit in the house and gives a better indication of duct length, surface area, bends and fittings. Attendees should have a good working knowledge of HVAC terminology and concepts.

Course Objectives: 

• Understand the basics of building geometry.

• Understand the basics of heating and cooling load calculations.

• Understand the basics of heating and cooling equipment selection.

• Understand the basics of duct layout and sizing.

• Understand the importance of good airflow on cooling equipment capacity and efficiency.

• Understand the importance of proper register/grille location, sizing and type.

Target Audience:

• HVAC Contractors

• HVAC Designers / Architects

• Energy Consultants

• HERS Raters

Learning Level:

Basic Class: Content is introductory in nature and requires no prerequisite knowledge or experience to grasp the concepts or participate in exercises. Basic educational activities and materials are meant to establish a foundation of knowledge and competence that will be expanded upon in practice or in higher level seminars and workshops.

Prerequisites: Attendees should have a good working knowledge of HVAC terminology and concepts.

3D Residential HVAC Design – Parts 1 and 2

Part 1 will cover load calculations and equipment sizing according to ACCA Manuals J and S (duct design according to Manual D will be covered in Part 2). The training will be based on a new 3D HVAC design software. Rather than drawing the house in a CAD software, this software “builds” the house out of scalable 3D boxes. The benefit of 3D design is that it helps make sure that the system being designed will actually fit in the house and gives a better indication of duct length, surface area, bends and fittings. Attendees should have some basic experience using an HVAC design software and/or knowledge of ACCA Manuals J/S/D, and a good working knowledge of HVAC terminology and concepts. It is highly recommended that you take Part 1 before taking Part 2. Part 2 will be held at the same time the following evening.

Course Objectives: 

• Understand the basics of how building geometry affects load calcs.

• Understand the basics of heating and cooling load calculations.

• Understand the basics of heating and cooling equipment selection.

• Become comfortable with the basic commands of Kwik Model with Energy Gauge Loads software.

Target Audience:

• HVAC Contractors

• HVAC Designers / Architects

• Energy Consultants

• HERS Raters

Learning Level:

Intermediate Class: Content is appropriate for individuals who possess a fundamental understanding of the topic and have familiarity with basic terminology and methodology of the subject matter. Attendees should have the capacity to participate in instructor-led exercises requiring synthesis and application of concepts.

Prerequisite: Basic experience in HVAC design software and/or knowledge of ACCA Manuals J/S/D and an understanding of HVAC terminology and concepts.

Don’t miss out.

Mark your calendars now.

We hope you can make it!

A Quick and Easy DIY for Improving Air Flow in a Home

7 Comments

My friends just moved into a new (to them) home and invited us to the housewarming party. I made the faux pas of critiquing their HVAC system. This embarrasses the heck out of my wife and happens far too often. It’s very hard not to say something when you know so much about how these homes were built. In our area, I can look at the type and location of the supply registers and tell you which HVAC company designed and installed it.

Probably 95% of production homes in CA (and likely all over) suffer from undersized ducts, which results in airflows below 350 CFM per ton or so. Some much less. In the 2013 version of CA’s energy code they mandated a minimum of 350 CFM per ton and 0.58 watts per CFM. Think of 350 CFM per ton as a D- grade. One CFM less is a FAIL. The other way to think of it is as the very worst airflow you can have and still meet code. When I was designing a lot of production homes, I designed to an absolute minimum of 400 CFM/ton and they regularly tested out at closer to 500 cfm/ton because I was pretty safe sizing ducts. More airflow is generally better, especially in hot/dry climates.

A real quick and easy way to improve airflow in these types of homes is to replace the cheap “stamped face” registers with a “bar-type” register. These may go by different names but, basically, a stamped face register is the most common style. The entire face and the fins are all from one piece of sheet metal that was stamped and the fins were bent in or out. Bar type registers have a rectangular frame, but each fin is a separate piece of metal that can be individually adjusted (without bending anything). Both Lowe’s and Home Depot sell both kinds. (Search “ceiling registers”on their sites.) The easiest way to tell them apart is price. Bar type registers are roughly twice the price of the same size stamped face, which explains why stamped face are the most common in most homes. But even at $15-$25 each, it’s a cheap way to really improve airflow. A bar type register is rated for roughly twice the airflow at the same pressure drop and sound rating as a stamped face. I’ve often measured up to 20% increase in airflow by replacing a stamped face register with a bar type, occasionally more. When I lived alone in an apartment, I took all the registers off completely and it made a huge difference! Only an bachelor engineering nerd can get away with that, though. (No, “bachelor engineering nerd” is not a redundant term.)

 

Bar Type Register – photo from homedepot.com

 

Stamped Face register – photo from homedepot.com

 

 

 

 

 

 

 

 

 

 

Here is link to a 10×6 bar type register sold by Home Depot: bar type register

Here is link to a similar one sold by Lowe’s: bar type register

Note that the size 10×6 refers to the size of the register boot behind the register. The dimension of the register itself is about 1 3/4 inch bigger in both dimensions. So if you were to go through your house and measure the outer frame dimension of all your registers, you would subtract about 1.75 from each dimension to get the nominal size (round to the nearest inch). They come in pretty standard sizes, usually even numbers, 12×4, 10×6, 12×6, 8×4, etc. They might also come in steel or aluminum. Aluminum is a bit more expensive. Steel is fine unless you live in a humid area. They perform about the same.

You can also sometimes buy directly from your local HVAC supply house. Tell them you want something comparable to a “Shoemaker 950 series (aluminum) or 951 series (steel) bar type register”.

The only tools you need are a screw driver and maybe a razor knife if the registers are caulked in place. Only do this project if you are comfortable working over your head while on a ladder and the registers are easily accessible. Be super careful. I’ve seen registers located 20′ above the floor. Leave those alone. Hopefully the screws holding the registers in place are going into wood and not just sheet rock. If not, which happens too often, you may have to use some sheet rock anchors.

I suggest only replacing the registers in the more important rooms, such as family room, master bedroom, etc. Smaller rooms like bathrooms and laundry rooms usually are getting plenty of air. If you have rooms where you’ve closed down a register, no need to replace those. Also, if you live in a two story house served by a single, non-zoned system (one thermostat) try replacing just the downstairs registers first. See if you notice a difference.

While you’ve got the registers off, take some caulk or expansive foam and seal the gap between the sheet rock and register boot (sheet metal box that penetrates the sheet rock and that the register slips into). Make sure you can get the register back in before the caulk or foam dries.

If you do this let me know how it came out! Good luck. Be safe.

Why We Need a Simpler HVAC Design Methodology

14 Comments

First of all, let me make one thing perfectly clear.  The ACCA Manual J/S/D residential HVAC design methodology is the premier methodology available today, and has been for many years.  It is the most precise, accurate and refined process for designing residential HVAC systems in the world.  It has gone through the rigorous ANSI certification process and has been reviewed and scrutinized by many of the greatest experts in the field.  It’s not perfect, but it is the best, hands down.

That being said, there is a problem.  The ACCA Manual J/S/D methodologies and the software programs that are based on them (Wrightsoft and Elite) are very complicated and have a very steep learning curve.  I first started doing HVAC design back in 1988 using handwritten ACCA worksheets.  That was probably an advantage because it forced me to understand each and every calculation and to be very careful about every assumption made along the way.  If you made a mistake at the very beginning but did not discover it until the end, you spent a lot of time re-doing the worksheets.  It was very tedious, but very educational.

Computer software programs have made the calculations much easier and allow the user to do multiple “what if” scenarios instantaneously.  ~~ What if they added ceiling insulation? – CLICK – answer.  What if they used low-E windows? – CLICK – answer. ~~  The computer software also allows users to make very BIG mistakes very quickly.  There are many, many seemingly innocent little input fields scattered throughout the programs that have huge impacts on the final results.  There are also a large number of input fields that have absolutely no impact on the final result.  A large portion of the learning curve is figuring out which is which.

Screen shot 2013-05-25 at 9.44.33 PM

This is a screen shot of a project in Wrightsoft’s Right-Suite Universal software. It makes me think of a control panel in a nuclear power plant. This is very intimidating, even to someone who is relatively computer literate. It takes years of experience and dozens of projects before someone can become comfortable with this level of complexity.

Both software packages cost over $1000 when you get most of the important features.  The software programs have also added a lot of really fancy features such as pull-down equipment libraries, estimating tools, and parts lists to name just a few.  In my opinion, these “features” sometimes clutter up the software and make it easier for people to make mistakes.

I truly, truly wish that every HVAC designer in the country used ACCA Manual J/S/D on every new home, addition, renovation and even most equipment replacements.  I honestly believe that 90%+ of existing homes would be well served to have their systems evaluated and re-designed based on ACCA Manual J/S/D.  Unfortunately, that will not happen.  Despite some really excellent training, much of it subsidized, Manual J/S/D is beyond the ability of the vast majority of HVAC contractors.  I don’t mean “ability” in terms of aptitude or intellect, but in terms of time and resources.  They don’t have the time to learn it or the time to perform it.  A good introductory J/S/D class is at least two full days long.  I personally have taught three-day classes that seemed like they only scratched the surface.

I forgot to mention that there are other manuals in addition to J, S, and D:

  • Manual H (Heat Pump Systems)
  • Manual P (Psychrometrics)
  • Manual T (Air Distribution Basics)
  • Manual 4 (Perimeter Heating & Cooling)
  • Manual TT-102 (Understanding the Friction Chart)

Again, don’t get me wrong.  I am a huge proponent for more ACCA J/S/D training.  It’s just that after teaching these classes multiple times and having performed about two thousand designs myself, I don’t think it is an appropriate level of precision for the vast majority of designs out there.

Screen shot 2013-05-25 at 11.07.43 PM

 To do a full-blown Manual J/S/D design from start to finish on a typical home would take the average user 4-6 hours.  From the time you hand them a set of plans and they turn on their computer, to the time you get back a design detailed enough to install from, takes at least that long.  This is a very expensive investment in time and energy, especially if it is just for bidding purposes and does NOT include the time it takes to draft up a presentable, full size set of plans that could be turned in to a building department for review and approval.

I strongly believe that most designs could be accomplished using a methodology that takes about one-fifth of the time.  I’ll stick my neck out and say that 80% of the residential HVAC systems being installed today could be accomplished using a far more simplified approach and result in a system that is just as good as one designed using a full J/S/D approach.

When you step back and realize that residential HVAC equipment only comes in a few sizes and residential ducting only comes in a few sizes, it makes one wonder why we are being so precise in the calculations.  Think about it.  The difference between a 3-ton system and the next larger size, 3.5-ton system, is an increase of 25%!  The difference in airflow between a 7” duct and the next larger size,  8”, is about 40%!  Why are we spending so much time on calculations that only have small impacts on the total cooling load and even smaller impacts on room loads?

I have two sayings that I use a lot in training, and in daily life for that matter.  The first I heard a long time ago and I don’t know who to attribute it to:  “Don’t waste time splitting hairs when you need to be shaving heads.”  The other is attributed to John Maynard Keynes, a famous British economist from the early 20th century:  “It is better to be approximately right than exactly wrong.”

They both relate to the need to put an appropriate amount of time and effort into what you are doing and realizing how that will impact the final result.

I believe that the current approach to HVAC design results in far too much hair splitting and results in answers that are very precise, but often wrong.  Not because the methodology is wrong, but because it is being applied wrong.

I am a firm believer that if you want to change an industry you have to do it in baby steps.  You can’t expect even a portion of contractors to suddenly start using a process that requires such an investment in time, effort and money.  That is why we need something in between the horribly inadequate design process used by MOST contractors today: a combination of rules-of-thumb and trial-and-error, and the full-blown ACCA J/S/D process.

We desperately need a more simplified design methodology.  One that is not intended to replace ACCA J/S/D in any way, but is intended to be a stepping-stone to learning the full process.  I’ve referred to it as a “gateway drug”.  The goal is to get people used to following a formal design process, albeit a greatly simplified one.  Once they get “hooked”, then we lay the “heavy stuff” on them.

I think we all want the same thing: to have homes that are comfortable, efficient, and affordable to operate.  We need to be able to make a decent living designing and installing systems, and homeowners should get what they pay for.